GBU approach to quark-hadron matter

David.Blaschke@gmail.com University of Wroclaw, Poland & JINR Dubna & MEPhl Moscow, Russia

- 1. Introduction: Beth-Uhlenbeck (BU) and Generalized BU
- **2. GBU from Φ-derivable approach: 2-loop approximation**
- 3. GBU EoS for quark-hadron matter in (P)NJL-type models

Statistical Model of Hadron Resonance Gas

Well established for Description of chemical freezeout

Introduction: Beth-Uhlenbeck vs. Generalized BU

Beth-Uhlenbeck: 2nd virial coefficient B(T)

BU for virial expansion of density:

$$n(\mu, T) = n_{\text{free}}(\mu, T) + 2n_{\text{corr}}(\mu, T)$$

$$n_{\text{free}}(\mu, T) = 4 \int \frac{d^3 p}{h^3} e^{-(p^2/2m - \mu)/T} = \frac{4}{\lambda^3} e^{\mu/T}$$

$$n_{\text{corr}}(\mu, T) = \int \frac{d^3 \mathbf{P}}{h^3} e^{-(P^2/4m - 2\mu)/T} \int_{-\infty}^{\infty} \frac{dE}{\pi} e^{-E/T} D(E)$$

$$= \frac{2^{3/2}}{\lambda^3} e^{2\mu/T} \int_{-\infty}^{\infty} \frac{dE}{\pi} e^{-E/T} D(E).$$

Example: Deuterons in nuclear matter

$$n = n_{\text{free}} + 2n_{\text{free}}^2 I(T)$$
$$I(T) = \lambda^3 \frac{2^{1/2}}{8} \left[3(e^{-E_0/T} - 1) + \int_0^\infty \frac{dE}{\pi T} e^{-E/T} \sum_{\alpha} c_{\alpha} \delta_{\alpha}(E) \right].$$

For T<<E_d: $n = n_{\text{free}} + 2n_{\text{deut}}$, $n_{\text{deut}} = n_{\text{free}}^2 \lambda^3 3 \frac{2^{1/2}}{8} e^{-E_d/T}$.

E. Beth and G.E. Uhlenbeck, Physica IV (1937) 915; S. Schmidt, G. Roepke, H. Schulz, Ann. Phys. 202 (1990) 57

$$pV = NkT \left(1 + \frac{B(T)}{V} + \frac{C(T)}{V^2} + \dots\right)$$

Density of states: bound and scattering part

$$D(E) = \sum_{\alpha} c_{\alpha} \left[\pi \delta(E - E_{\alpha}) + \frac{d}{dE} \delta_{\alpha}(E) \right],$$

Introduction: Beth-Uhlenbeck vs. Generalized BU

Φ-derivable approach, **2-loop approximation**

J.-P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D 63 (2001) 065003

Skeleton expansion for thermodynamic potential and entropy

$$\beta \Omega[D] = -\log Z = \frac{1}{2} \operatorname{Tr} \log D^{-1} - \frac{1}{2} \operatorname{Tr} \Pi D + \Phi[D]$$

$$\Phi[D] = 1/12 + 1/8 + 1/48 + ...$$

Inv. Temp: 1/T trace in conf. Space self-energy related to D

Dyson equation: $D^{-1} = D_0^{-1} + \Pi$ Free propagator Do is known

Essential property of $\Omega[D]$ is Stationarity under variation of D: $\delta \Omega[D] / \delta D = 0$

This implies $\delta \Phi[D] / \delta D = 1/2 \Pi$

Physical propagator and selfenergy are defined self-consistently !

Self-consistent approximations are defined by the choice of Φ

 Φ – derivable theories

G. Baym, Phys. Rev. 127 (1962) 1391; Vanderheyden & Baym; J. Stat. Phys. 93, 843 (1998)

Approximately selfconsistent thermodynamics

Matsubara summation:

$$\Omega/V = \int \frac{d^4k}{(2\pi)^4} n(\omega) [\operatorname{Im}\log(-\omega^2 + k^2 + \Pi) - \operatorname{Im}\Pi D] + T\Phi[D]/V$$

Analytic properties:

$$D(\omega,k) = \int_{-\infty}^{\infty} \frac{dk_0}{2\pi} \frac{\rho(k_0,k)}{k_0 - \omega}, \qquad \text{Im} D(\omega,k) \equiv \text{Im} D(\omega + i\epsilon,k) = \frac{\rho(\omega,k)}{2}.$$

Thermodynamics from entropy density: $S = -\partial (\Omega/V)/\partial T$.

Loosely speaking: S' accounts for residual interactions of "independent quasiparticles" d/d ω [Im log D⁻¹ + Im Π ReD] = 2 Im [D Im Π (d/d ω D*) Im Π] = 2 sin² δ d δ /d ω , for D = |D|e^{i δ}

D. B., in preparation (2017)

$$\mathcal{S}' \equiv -\frac{\partial (T\Phi/V)}{\partial T} \bigg|_{D} + \int \frac{d^{4}k}{(2\pi)^{4}} \left\{ \frac{\partial n(\omega)}{\partial T} \operatorname{Re}\Pi \operatorname{Im} D \right\}$$

First term

$$-\frac{T}{V}\Phi = \frac{g^2}{12}T^2\sum_{\omega_1,\omega_2}\int \frac{d^3k_1d^3k_2}{(2\pi)^6}D(\omega_1,|k_1|)D(\omega_2,|k_2|)D(-\omega_1-\omega_2,|-k_1-k_2|)$$

Spectral representation

$$D(\omega, k) = \int_{-\infty}^{\infty} \frac{dk_0}{2\pi} \frac{\rho(k_0, k)}{k_0 - \omega}$$

Matsubara sums

$$-\frac{T}{V}\Phi = \frac{g^2}{12}T^2 \sum_{\omega_1,\omega_2} \int \frac{d^4k d^4k' d^4k''}{(2\pi)^9} \delta^{(3)}(\mathbf{k} + \mathbf{k}' + \mathbf{k}'')\rho(k)\rho(k')\rho(k'') \frac{-1}{\omega_1 - k_0} \frac{-1}{\omega_2 - k_0'} \frac{1}{\omega_1 + \omega_2 + k_0''} \frac{1}{\omega_1 + \omega_2 + k_0''} \frac{1}{\omega_1 + \omega_2 + k_0''} \frac{1}{\omega_1 - \omega_2} \frac{1}{\omega_2 - \omega_2} \frac{1}{\omega_1 - \omega_2$$

Partial fraction decomposition of the three energy denominators and Matsubara summation over ω_1, ω_2 yields:

$$\frac{1}{k_0 + k'_0 + k''_0} \left\{ [n(k''_0) + 1][n(k_0) + n(k''_0) + 1] + n(k_0)n(k''_0) \right\}$$

Temperature derivative and renaming variables under the integrals

$$\partial_T \left[n(k_0 + n(k_0') + n(k_0') + n(k_0')n(k_0) + n(k_0')n(k_0'') + n(k_0)n(k_0'') \right] \to 3\partial_T n(k_0) \left[1 + n(k_0') + n(k_0'') \right]$$

Second term:

$$\operatorname{Re}\Pi(\omega, q) = -\frac{g^2}{2} \int \frac{d^3k}{(2\pi)^3} \int \frac{dk_0}{2\pi} \int \frac{dk'_0}{2\pi} \rho(k_0, |\mathbf{k}|) \rho(k'_0, |\mathbf{k} + \mathbf{q}|) \sum_{\omega_1} \frac{1}{\omega_1 - k_0} \frac{1}{\omega_1 + \omega - k'_0} \\ = -\frac{g^2}{2} \int \frac{d^3k}{(2\pi)^3} \int \frac{dk_0}{2\pi} \int \frac{dk'_0}{2\pi} \rho(k_0, |\mathbf{k}|) \rho(k'_0, |\mathbf{k} + \mathbf{q}|) \frac{1 + n(k_0) + n(k'_0)}{\omega + k_0 + k'_0}$$
(7)

$$\int \frac{d^4q}{(2\pi)^4} \frac{\partial n(k_0)}{\partial T} \operatorname{Re}\Pi(\omega, q) \operatorname{Im}D(\omega, q) = \\ = -\frac{g^2}{2 \cdot 2} \int \frac{d^4q}{(2\pi)^4} \int \frac{d^k k'}{(2\pi)^4} \int \frac{d^4k'}{2\pi} \delta^{(3)}(\mathbf{q} + \mathbf{k} + \mathbf{k}') \rho(q) \rho(k) \rho(k') \partial_T n(q_0) \left[1 + n(k_0) + n(k_0')\right] \frac{1}{q_0 + k_0 + k_0'}$$
(8)

This proves the cancellation of S' for the scalar theory with cubic selfinteraction in the 2-loop approximation (sunset diagram) for the Φ --functional.

This cancellation holds as well for the pressure and the density!

For the pressure we obtain

$$p(T) = -\int \frac{d^4q}{(2\pi)^4} n(q_0) \left[\delta(q) - \sin\delta(q)\cos\delta(q)\right] = -\int \frac{d^4q}{(2\pi)^4} T \ln\left(1 - e^{-q_0/T}\right) \frac{\partial\delta(q)}{\partial q_0} 2\sin^2\delta(q)$$
(9)

Note that in the approximation $\delta(q_0, q) = -\arctan[\omega\gamma/(q_0^2 - \omega^2)]$ the "spectral distribution" does not correspond to a Lorentzian (Breit-Wigner) function as naïvely expected, but to a "squared Lorentzian"

$$\frac{q_0(\omega\gamma)^3}{[(q_0^2 - \omega^2)^2 + (\omega\gamma)^2]^2}$$
(10)

See, e.g., Vanderheyden & Baym (1998); Morozov & Röpke, Ann. Phys. 324 (2009) 1261

Approximately selfconsistent HTL resumm. QCD

FIG. 3. Diagrams for Φ at 2-loop order in QCD. Wiggly, plain, and dotted lines refer respectively to gluons, quarks, and ghosts.

In ghost-free gauge, HTL resummed QCD thermodyn.

$$S_2 = -\frac{g^2 N_g T}{48} \left\{ \frac{4N + 5N_f}{3} T^2 + \frac{3N_f}{\pi^2} \mu^2 \right\},\,$$

$$\mathcal{N}_2 = -\frac{g^2 \mu N_g N_f}{16\pi^2} \left(T^2 + \frac{\mu^2}{\pi^2} \right),$$

$$P_2 = -\frac{g^2 N_g}{32} \left\{ \frac{4N + 5N_f}{18} T^4 + \frac{N_f}{\pi^2} \mu^2 T^2 + \frac{N_f}{2\pi^4} \mu^4 \right\}$$

 T/T_c

S/SSB

J.-P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D 63 (2001) 065003

Generalized Optical Theorems

See derivations for T-matrices by R. Zimmermann & H. Stolz, pss (b) 131, 151 (1985) Here we consider the analogue of $T^{-1} = V^{-1} - G_2^{0}$, the propagator $S^{-1} = G^{-1} - \Pi$, G real, static

Assuming the inverse exists we have two identities: $S = S^*S^{*-1}S$ and $S^* = S^*S^{-1}S$

With definition $S^{-1} = G^{-1} - \Pi$ follows off-shell optical theorem:

 $S_I = S^* \Pi_I S = S \Pi_I S^*$

Using the fact that G is a real constant, we have: $(S_R^{-1})' = -\Pi_R'$ and $S_I^{-1} = -\Pi_I$

$$\begin{split} S'_{R} &= S^{*'}S_{R}^{-1}S + S^{*}(S_{R}^{-1})'S + S^{*}S_{R}^{-1}S' \\ &= S^{*'}(\underbrace{S_{R}^{-1} + \mathrm{i}S_{I}^{-1}}_{S^{-1}} - \mathrm{i}S_{I}^{-1})S + S^{*}(S_{R}^{-1})'S + S^{*}(\underbrace{S_{R}^{-1} - \mathrm{i}S_{I}^{-1}}_{S^{*-1}} + \mathrm{i}S_{I}^{-1})S' \\ &= \underbrace{S^{*'} + S'}_{2S'_{R}} - \mathrm{i}S^{*'}S_{I}^{-1}S + \mathrm{i}S^{*}S_{I}^{-1}S' + S^{*}(S_{R}^{-1})'S \\ &= S^{*}\Pi'_{R}S - \mathrm{i}S^{*'}\Pi_{I}S + \mathrm{i}S^{*}\Pi_{I}S' , \end{split}$$
 Derivative optical theorem:

$$S'_R\Pi_I = \underbrace{S^*\Pi'_R S\Pi_I}_{\Pi'_R S_I} + \underbrace{iS^*\Pi_I S'\Pi_I - iS^{*'}\Pi_I S\Pi_I}_{2\operatorname{Im}[\Pi_I S\Pi_I S^{*'}]}, \qquad \longrightarrow \qquad S'_R\Pi_I - \Pi'_R S_I = 2\operatorname{Im}[\Pi_I S\Pi_I S^{*'}]$$

Φ-derivable Q-M-D PNJL model, 2-loop approximation

$$\Omega = \frac{1}{2} \frac{T}{V} \sum_{i=Q,M,D} c_i \operatorname{Tr} \left\{ \ln \left[S_i^{-1} \right] + \left[S_i \Pi_i \right] \right\} + \Phi \left[S_Q, S_M, S_D \right] ,$$

$$S^{-1}(iz \quad \mathbf{q}) = S^{-1}(iz \quad \mathbf{q}) = \Pi_i (iz \quad \mathbf{q}) \qquad \frac{\delta\Omega}{\delta\Omega} = 0 \quad \text{if} \quad \Pi_i = \frac{\delta\Omega}{\delta\Omega}$$

$$S_{i}^{-1}(\mathrm{i}z_{n},\mathbf{q}) = S_{i,0}^{-1}(\mathrm{i}z_{n},\mathbf{q}) - \Pi_{i}(\mathrm{i}z_{n},\mathbf{q}) , \qquad \overline{\delta S_{i}} = 0 , \quad \text{if} \quad \Pi_{i} = \overline{\delta S_{i}} .$$

$$\Omega = \frac{1}{2}T \sum_{i=Q,M,D} \int \frac{d^{3}q}{(2\pi)^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{i}(\omega) \operatorname{Tr} \left\{ \operatorname{Im} \ln \left[S_{i}^{-1} \right] + \left[\operatorname{Re} S_{i} \operatorname{Im} \Pi_{i} \right] \right\} + \tilde{\Omega}$$

$$\widetilde{\Omega} = \Phi \left[S_{Q}, S_{M}, S_{D} \right] - \frac{1}{2}T \sum_{i=Q,M,D} \int \frac{d^{3}q}{(2\pi)^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{i}(\omega) \operatorname{Tr} \left\{ \left[\operatorname{Im} S_{i} \operatorname{Re} \Pi_{i} \right] \right\} ,$$

Φ-derivable Q-M-D PNJL model, 2-loop approximation

$$\Omega = \frac{1}{2} \frac{T}{V} \sum_{i=Q,M,D} c_i \operatorname{Tr} \left\{ \ln \left[S_i^{-1} \right] + \left[S_i \Pi_i \right] \right\} + \Phi \left[S_Q, S_M, S_D \right] ,$$

$$S^{-1}(iz, q) = S^{-1}(iz, q) - \Pi_i(iz, q) \qquad \delta\Omega \qquad \text{if } \Pi \qquad \delta\Omega$$

$$S_{i}^{-}(\mathrm{i}z_{n},\mathbf{q}) = S_{i,0}^{-}(\mathrm{i}z_{n},\mathbf{q}) - \Pi_{i}(\mathrm{i}z_{n},\mathbf{q}) , \qquad \overline{\delta S_{i}} = 0 , \quad \mathrm{if} \quad \Pi_{i} = \overline{\delta S_{i}} .$$

$$\Omega = \frac{1}{2}T \sum_{i=Q,M,D} \int \frac{d^{3}q}{(2\pi)^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{i}(\omega) \operatorname{Tr} \left\{ \mathrm{Im} \ln \left[S_{i}^{-1} \right] + \left[\operatorname{Re} S_{i} \operatorname{Im} \Pi_{i} \right] \right\} + \tilde{\Omega}$$

$$\widetilde{\Omega} = \Phi \left[S_{Q}, S_{M}, S_{D} \right] - \frac{1}{2}T \sum_{i=Q,M,D} \int \frac{d^{3}q}{(2\pi)^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{i}(\omega) \operatorname{Tr} \left\{ \left[\operatorname{Im} S_{i} \operatorname{Re} \Pi_{i} \right] \right\} ,$$

$$\begin{split} \mathcal{S} &= -\frac{\partial\Omega}{\partial T} = \sum_i \mathcal{S}_i + \mathcal{S}_i \\ \mathcal{N} &= -\frac{\partial\Omega}{\partial\mu} = \sum_i \mathcal{N}_i + \mathcal{N}_i \,. \end{split}$$

Φ-derivable Q-M-D PNJL model, 2-loop approximation

$$\left(\operatorname{Im} \ln S^{-1}\right)' = -\operatorname{Im}\left(S\Pi'\right) = \underbrace{S'_R \Pi_I - S_I \Pi'_R}_{2\operatorname{Im}\left(S\Pi_I S^{\star} '\Pi_I\right)} - \underbrace{\left(\prod_I S'_R + S_R \Pi'_I\right)}_{(\Pi_I S_R)'} ,$$

Use optical theorems ...

 $S\Pi_I = \sin \delta e^{\mathrm{i}\delta} , \quad S^{*'}\Pi_I = -\mathrm{i}\delta' \sin \delta e^{-\mathrm{i}\delta} , \quad 2\operatorname{Im}(S\Pi_I S^{*'}\Pi_I) = -2\delta' \sin^2 \delta .$

Generalized Beth-Uhlenbeck EoS

$$\Omega = -\sum_{i=Q,M,D} d_i \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} T \ln[1 - \mathrm{e}^{-(\omega-\mu_i)/T}] \sin^2 \delta_i(\omega,\mathbf{q}) \frac{\partial \delta_i(\omega,\mathbf{q})}{\partial \omega}$$

Effect of the sin^2 term ... example: Breit-Wigner ...

$$\begin{split} \delta_{i}(\omega) &= -\arctan\left[\frac{\omega_{i}\Gamma_{i}}{\omega^{2} - \omega_{i}^{2}}\right], \quad \frac{\partial\delta_{i}(\omega)}{\partial\omega} = \frac{2\omega\omega_{i}\Gamma_{i}}{(\omega^{2} - \omega_{i}^{2})^{2} + \omega_{i}^{2}\Gamma_{i}^{2}}\\ \sin^{2}\delta_{i}(\omega)\frac{\partial\delta_{i}(\omega)}{\partial\omega} &= \frac{2\omega(\omega_{i}\Gamma_{i})^{3}}{[(\omega^{2} - \omega_{i}^{2})^{2} + \omega_{i}^{2}\Gamma_{i}^{2}]^{2}} \cdot \begin{array}{c} \text{``Squared I}\\ \text{Vanderhey}\\ \text{Morozov 8} \end{array}$$

"Squared Lorentzian" ... Vanderheyden & Baym (1998) Morozov & Roepke (2009)

2

1. Cluster expansion in the 2PI formalism

• $\Phi-$ derivable approach to the grand canonical thermodynamic potential [Baym, Phys. Rev. 127 (1962) 139]

 $J = -\text{Tr} \{\ln(-G_1)\} - \text{Tr} \{\Sigma_1 G_1\} + \text{Tr} \{\ln(-G_2)\} + \text{Tr} \{\Sigma_2 G_2\} + \Phi[G_1, G_2]$

with full propagators:

 $G_1^{-1}(1,z) = z - E_1(p_1) - \Sigma_1(1,z); G_2^{-1}(12,1'2',z) = z - E_1(p_1) - E_2(p_2) - \Sigma_2(12,1'2',z)$ and selfenergies

$$\Sigma_1(1,1') = \frac{\delta\Phi}{\delta G_1(1,1')}; \Sigma_2(12,1'2',z) = \frac{\delta\Phi}{\delta G_2^{-1}(12,1'2',z)}$$

Because of stationarity equivalent to

$$n = -\frac{1}{\Omega} \frac{\partial J}{\partial \mu} = \frac{1}{\Omega} \sum_{1} \int_{-\infty}^{\infty} \frac{d\omega}{\pi} f_1(\omega) S_1(1,\omega) \,,$$

(baryon number conservation)

Generalization to A-nucleon clusters in nuclear matter

$$\Omega = \sum_{A} (-1)^{A} \left[\operatorname{Tr} \ln \left(-G_{A}^{-1} \right) + \operatorname{Tr} \left(\Sigma_{A} G_{A} \right) \right] + \Phi ,$$

$$G_{A}^{-1} = G_{A}^{(0)^{-1}} - \Sigma_{A} , \quad \Sigma_{A} (1 \dots A, 1' \dots A', z_{A}) = \frac{\delta \Phi}{\delta G_{A} (1 \dots A, 1' \dots A', z_{A})} .$$

1. Cluster expansion in the 2PI formalism

A) Choice of the Φ-functional:

- 2-particle irreducible diagrams
- closed 2-loop diagram involving 3 cluster propagators (A, B, A+B) and 2 vertices
- equivalent to 1 T-matrix + 2 propagators

B) Ansatz for thermodynamic potential:

$$\Omega = \sum_{A} (-1)^{A} \left[\operatorname{Tr} \ln \left(-G_{A}^{-1} \right) + \operatorname{Tr} \left(\Sigma_{A} \ G_{A} \right) \right] + \sum_{A,B} \Phi[G_{A}, G_{B}, G_{A+B}] ,$$

$$G_{A}^{-1} = G_{A}^{(0)^{-1}} - \Sigma_{A} , \ \Sigma_{A}(1 \dots A, 1' \dots A', z_{A}) = \frac{\delta \Phi}{\delta G_{A}(1 \dots A, 1' \dots A', z_{A})} .$$

C) Check: conservation laws, e.g.: (correspondence to GF formalism)

$$n = -\frac{1}{V} \frac{\partial \Omega}{\partial \mu} = \frac{1}{V} \sum_{1} \int_{-\infty}^{\infty} \frac{d\omega}{\pi} f_1(\omega) A_1(1, \omega)$$

Cluster virial expansion in the 2PI formalism, Examples:

A) Deuterons in nuclear matter:

B) Mesons in quark matter:

C) Nucleons in quark matter:

D) Nucleons and mesons (hadron resonance gas) in quark matter:

Example B: Mesons in quark matter

D. Blaschke, M. Buballa, A. Dubinin, G. Roepke, D. Zablocki: Ann. Phys. 348 (2014) 228 D. Blaschke, PoS Baldin ISHEPXXII (2015) 113; arxiv:1502.06279

Example B: Mesons in quark matter

D. Blaschke, M. Buballa, A. Dubinin, G. Roepke, D. Zablocki: Ann. Phys. 348 (2014) 228 D. Blaschke, PoS Baldin ISHEPXXII (2015) 113; arxiv:1502.06279

Example B: Mesons in quark matter

D. Blaschke, M. Buballa, A. Dubinin, G. Roepke, D. Zablocki: Ann. Phys. 348 (2014) 228

Example B*: Mesons+diquarks in quark matter

$$\Omega_{\rm Q} = -\frac{2N_c N_f}{3} \int \frac{dp}{2\pi^2} \frac{p^4}{E_p} [f_{\Phi}^+(E_p) + f_{\Phi}^-(E_p)], \ f_{\Phi}^+(E_p) = \frac{(\bar{\Phi} + 2\Phi Y)Y + Y^3}{1 + 3(\bar{\Phi} + \Phi Y)Y + Y^3}, \ Y = e^{-(E_p - \mu)/T}$$

$$\Omega_{\rm D} = -3 \int \frac{d^3 p}{(2\pi)^3} \int \frac{d\omega}{2\pi} [g_{\Phi}^+(\omega) + g_{\Phi}^-(\omega)] \delta_D(\omega), \ g_{\Phi}^+(\omega) = \frac{(\Phi - 2\bar{\Phi}X)X + X^3}{1 - 3(\Phi - \bar{\Phi}X)X - X^3}$$
Suppression of colored states by Polyakov-loop Φ
Confinement: $\Phi = 0$

$$0.6 \int \frac{1}{\Phi} \int \frac{d\omega}{2\pi} [g_{\Phi}^+(\omega) + g_{\Phi}^-(\omega)] \delta_D(\omega), \ g_{\Phi}^+(\omega) = \frac{(\Phi - 2\bar{\Phi}X)X + X^3}{1 - 3(\Phi - \bar{\Phi}X)X - X^3}$$
Suppression of colored states by Polyakov-loop Φ
Confinement: $\Phi = 0$

$$0.6 \int \frac{1}{\Phi} \int \frac{d\omega}{d\omega} [g_{\Phi}^-(\omega) - g_{\Phi}^-(\omega)] \delta_D(\omega), \ g_{\Phi}^+(\omega) = \frac{(\Phi - 2\bar{\Phi}X)X + X^3}{1 - 3(\Phi - \bar{\Phi}X)X - X^3}$$
Suppression of colored states by Polyakov-loop Φ
Confinement: $\Phi = 0$

$$0.6 \int \frac{1}{\Phi} \int \frac{1$$

D. Blaschke, A. Dubinin, M. Buballa: Phys. Rev. D 91 (2015) 125040

Example D: Hadron resonance gas – effect. model

Φ-functional:

Selfenergies:

Example D: Mott HRG / PNJL – effective model

 $P_{\text{PNJL}}(T) = P_{\text{FG}}(T) + \mathscr{U}[\Phi; T]$, $P_{\rm FG}(T) = 4 \sum_{a=n,d,c} \int \frac{d^3p}{(2\pi)^3} T \ln\left[1 + 3\Phi(Y+Y^2) + Y^3\right]$ $Y(E_p) = \exp(-E_p/T)$ $\mathscr{U}[\Phi;T] = -\frac{a(T)}{2}\Phi^2 + b(T)\ln(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4)$ T-dependent quark masses from fit to LQCD $m(T) = [m(0) - m_0]\Delta_{l,s}(T) + m_0$ $m_s(T) = m(T) + m_s - m_0$, $\Delta_{l,s}(T) = \frac{1}{2} \left| 1 - \tanh\left(\frac{T - T_c}{\delta_T}\right) \right|$

$$T_c = 154 \text{ MeV}$$
 $\delta_T = 26 \text{ MeV}$

D. Blaschke, A. Dubinin, L. Turko, arxiv:1611.09845

Example D: Mott HRG / PNJL – effective model

$$\begin{split} P_i(T) &= \ \mp d_i \int_0^\infty \frac{dp \ p^2}{2\pi^2} \int_0^\infty dM \ T \ln \left(1 \mp \mathrm{e}^{-\sqrt{p^2 + M^2}/T} \right) \ \frac{2}{\pi} \sin^2 \delta_i(M^2;T) \frac{d\delta_i(M^2;T)}{dM} \\ \text{Quarks + rescattering effects} & f_{\Phi}(\omega) \ = \ \frac{\Phi(1 + 2Y)Y + Y^3}{1 + 3\Phi(1 + Y)Y + Y^3} \ , \\ P_{\mathrm{FG}}^*(T) &= 4N_c \sum_{q=u,d,s} \int \frac{dp \ p^2}{2\pi^2} \int \frac{d\omega}{\pi} f_{\Phi}(\omega) \delta_q(\omega;\gamma), \\ \delta_q(\omega;\gamma) &= \frac{\pi}{2} + \arctan\left[\frac{\omega - \sqrt{p^2 + m_q^2}}{\gamma}\right] \end{split}$$

Example D: Mott HRG / PNJL – effective model

D.B., A. Dubinin, L. Turko, arxiv:1612.09556

What about K+/π+ (Marek's horn) in THESEUS ?

2-phase EoS, b = 2 fm

THESEUS simulation reproduces 3FH result, Thus it has the same discrepancy with experiment

--> some key element still missing in the program

Batyuk, D.B., Bleicher, et al., PRC 94, 044917 (2016)

Recent new development in PHSD

Chiral symmetry restoration in HIC at intermediate ..." A. Palmese et al., arxiv: 1607.04073; PRC 94, 044912

Mott dissociation of π and K in hot, dense quark matter

D. Blaschke, A. Dubinin, A. Radzhabov, A. Wergieluk, arxiv:1608.05383

Andrey Radzhabov in front of the University of Wroclaw

PNJL model for N_f =2+1 quark matter with π and K

$$\mathcal{L} = \bar{q} \left(i \gamma^{\mu} D_{\mu} + \hat{m}_{0} \right) q + G_{S} \sum_{a=0}^{8} \left[\left(\bar{q} \lambda^{a} q \right)^{2} + \left(\bar{q} i \gamma_{5} \lambda^{a} q \right)^{2} \right] - \mathcal{U} \left(\Phi[A], \bar{\Phi}[A]; T \right)$$

$$\Pi_{ff'}^{M^{a}}(q_{0}, \mathbf{q}) = 2N_{c}T \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \operatorname{tr}_{D} \left[S_{f}(p_{n}, \mathbf{p}) \Gamma_{ff'}^{M^{a}} S_{f'}(p_{n} + q_{0}, \mathbf{p} + \mathbf{q}) \Gamma_{ff'}^{M^{a}} \right]$$

$$\Gamma_{ff'}^{P^{a}} = i \gamma_{5} T_{ff'}^{a}, \quad \Gamma_{ff'}^{S^{a}} = T_{ff'}^{a}, \quad T_{ff'}^{a} = \begin{cases} \left(\lambda_{3} \right)_{ff'}, \\ \left(\lambda_{1} \pm i \lambda_{2} \right)_{ff'} / \sqrt{2}, \\ \left(\lambda_{4} \pm i \lambda_{5} \right)_{ff'} / \sqrt{2}, \\ \left(\lambda_{6} \pm i \lambda_{7} \right)_{ff'} / \sqrt{2}, \end{cases}$$

$$P^{a} = \pi^{0}, \pi^{\pm}, K^{\pm}, K^{0}, \bar{K}^{0}$$

$$\Pi_{ff'}^{P^{a}, S^{a}}(q_{0} + i \eta, \mathbf{0}) = 4 \{ I_{1}^{f}(T, \mu_{f}) + I_{1}^{f'}(T, \mu_{f'}) \mp \left[\left(q_{0} + \mu_{ff'} \right)^{2} - \left(m_{f} \mp m_{f'} \right)^{2} \right] I_{2}^{ff'}(z, T, \mu_{ff'}) \}$$

$$I_{1}^{f}(T, \mu_{f}) = \frac{N_{c}}{4\pi^{2}} \int_{0}^{\Lambda} \frac{dp p^{2}}{E_{f}} \left(n_{f}^{-} - n_{f}^{+} \right),$$

$$I_{2}^{ff'}(z, T, \mu_{ff'}) = \frac{N_{c}}{4\pi^{2}} \int_{0}^{\Lambda} \frac{dp p^{2}}{E_{f}E_{f'}} \left[\frac{E_{f'}}{(z - E_{f} - \mu_{ff'})^{2} - E_{f'}^{2}} n_{f}^{-} \right]$$

$$-\frac{E_{f'}}{(z+E_f-\mu_{ff'})^2-E_{f'}^2} n_f^+ + \frac{E_f}{(z+E_{f'}-\mu_{ff'})^2-E_f^2} n_{f'}^- - \frac{E_f}{(z-E_{f'}-\mu_{ff'})^2-E_f^2} n_{f'}^+$$

PNJL model for N_f =2+1 quark matter with π and K

$$m_{f} = m_{0,f} + 16 m_{f}G_{S}I_{1}^{f}(T,\mu), \quad \mathcal{P}_{ff'}^{M^{a}}(M_{M^{a}} + i\eta, \mathbf{0}) = 1 - 2G_{S}\Pi_{ff'}^{M^{a}}(M_{M^{a}} + i\eta, \mathbf{0}) = 0.$$

$$P_{f} = -\frac{(m_{f} - m_{0,f})^{2}}{8G} + \frac{N_{c}}{\pi^{2}} \int_{0}^{\Lambda} dp \, p^{2} E_{f} + \frac{N_{c}}{3\pi^{2}} \int_{0}^{\infty} \frac{dp \, p^{4}}{E_{f}} \left[f_{\Phi}^{+}(E_{f}) + f_{\Phi}^{-}(E_{f}) \right]$$

$$P_{M} = d_{M} \int \frac{d^{3}q}{(2\pi)^{3}} \int_{0}^{\infty} \frac{d\omega}{2\pi} \left\{ g(\omega - \mu_{M}) + g(\omega + \mu_{M}) \right\} \delta_{M}(\omega, \mathbf{q})$$

$$\delta_{M}(\omega, \mathbf{q}) = -\arctan\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega + i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega + i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega + i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Re}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)}{\operatorname{Im}\left(\mathcal{P}_{ff'}^{M}(\omega - i\eta, \mathbf{q})\right)} \right\}$$

$$M_{0} = -\operatorname{arctan}\left\{ \frac$$

Mott dissociation of pions and kaons in the Beth-Uhlenbeck approach ...

D.B., A. Dubinin, A. Radzhabov, A. Wergieluk, arxiv:1608.05383 D.B., M. Buballa, A. Dubinin, G. Ropke, D. Zablocki, Ann. Phys. (2014)

Thermodynamics of resonances (M) via phase shifts

$$P_{\rm M} = d_{\rm M} \int \frac{{\rm d}^3 q}{(2\pi)^3} \int_0^\infty \frac{{\rm d}s}{4\pi} \frac{1}{\sqrt{s+q^2}} \bigg\{ g(\sqrt{s+q^2}-\mu_{\rm M}) \bigg\} \delta_{\rm M}(\sqrt{s};T,\mu)$$

Polyakov-loop Nambu – Jona-Lasinio modell

$$\begin{split} \Pi_{ff'}^{M^*}(q_0,\mathbf{q}) &= 2N_c T \sum_n \int \frac{d^3p}{(2\pi)^3} \mathrm{tr}_D \left[S_f(p_n,\mathbf{p}) \Gamma_{ff'}^{M^*} S_{f'}(p_n+q_0,\mathbf{p}+\mathbf{q}) \Gamma_{ff'}^{M^*} \right] \\ \mathcal{P}_{ff'}^{M^*}(M_{M^*}+i\eta,\mathbf{0}) &= 1 - 2G_S \Pi_{ff'}^{M^*}(M_{M^*}+i\eta,\mathbf{0}) \\ \delta_M(\omega,\mathbf{q}) &= -\arctan\left\{ \frac{\mathrm{Im}\left(\mathcal{P}_{ff'}^M(\omega-i\eta,\mathbf{q})\right)}{\mathrm{Re}\left(\mathcal{P}_{ff'}^M(\omega+i\eta,\mathbf{q})\right)} \right\} \end{split}$$

Evaluation along trajectories μ/T =const in the phase diagram:

- Pion and a0 as partner states,
- Chiral symmetry restoration,
- Mott dissociation of bound states,
- Levinson theorem

Mott dissociation of pions and kaons in the Beth-Uhlenbeck approach ...

D.B., A. Dubinin, A. Radzhabov, A. Wergieluk, arxiv:1608.05383 Polarization loop in Polyakov-loop Nambu – Jona-Lasinio model

$$\Pi_{ff'}^{P^a,S^a}(q_0+i\eta,\mathbf{0}) = 4\left\{I_1^f(T,\mu_f) + I_1^{f'}(T,\mu_{f'}) \\ \mp \left[(q_0+\mu_{ff'})^2 - (m_f \mp m_{f'})^2\right]I_2^{ff'}(z,T,\mu_{ff'})\right\}$$

Anomalous low-mass mode for K+ in the dense medium !!

Mott dissociation of pions and kaons in Beth-Uhlenbeck: Explanation of the "horn" effect for K+/ π + in HIC?

Ratio of yields in BU approach defined via phase shifts:

$\frac{n_{K^{\pm}}}{n_{\pi^{\pm}}} = \frac{\int dM \int d^3p \ (M/E) g_{K^{\pm}}(E) [1 + g_{K^{\pm}}(E)] \delta_{K^{\pm}}(M)}{\int dM \int d^3p \ (M/E) g_{\pi^{\pm}}(E) [1 + g_{\pi^{\pm}}(E)] \delta_{\pi^{\pm}}(M)}$

Evaluation along the freeze-out Curve parametrized by Cleymans et al.

- enhancement for K+ due to anomalous in-medium bound state mode
- no such enhancement for K- or pions
- explore the effect in thermal statistical models and in THESEUS ...

D.B., A. Dubinin, A. Radzhabov, A. Wergieluk, arxiv:1608.05383

- GBU accounts consistently for hadron formation and dissociation (Mott effect) In chiral Quark/Gluon models
- Comparison/calibration with lattice QCD data OK (shall be extended to finite mu)
- Fraction of hadronic correlations (bound and continuum) input for models
- New modes in medium due to BSE dynamics (e.g., K+)

Additional Slides

Example C: Nucleons in quark matter

quark exchange interaction between nucleons:

Example C: Nucleons in quark matter

quark exchange interaction between nucleons:

Example C: Nucleons in quark matter

quark exchange interaction between nucleons:

Intermezzo: Structure of the baryon?

12-Apostle Church, Kars

Intermezzo: Structure of the baryon?

12-Apostle Church, Kars

Intermezzo: Structure of the baryon?

$$Z_{\rm fluct} = \int D\Delta^{\dagger} D\Delta D\phi \exp\{-\frac{|\Delta|^2}{4G_D} - \frac{\phi^2}{4G} - Tr \ln S^{-1}[\Delta, \Delta^{\dagger}, \phi]\}$$

Cahill, Roberts, Prashifka: Aust. J. Phys. 42 (1989) 129, 161 Cahill, ibid, 171; Reinhardt: PLB 244 (1990) 316; Buck, Alkofer, Reinhardt: PLB 286 (1992) 29

Borromean ? !!

Example C: Pauli blocking among baryons

a) Low density: Fermi gas of nucleons (baryons)

- b) ~ saturation: Quark exchange interaction and Pauli blocking among nucleons (baryons)
- c) high density: Quark cluster matter (string-flip model ...)

Roepke & Schulz, Z. Phys. C 35, 379 (1987); Roepke, DB, Schulz, PRD 34, 3499 (1986)

Nucleon (baryon) self-energy --> Energy shift $\Delta E_{\nu P}^{\text{Pauli}} = \sum_{123} |\psi_{\nu P}(123)|^{2} [E(1) + E(2) + E(3) - E_{\nu P}^{0}] [f_{\alpha_{1}}(1) + f_{\alpha_{2}}(2) + f_{\alpha_{3}}(3)] \\
+ \sum_{123} \sum_{456} \sum_{\nu P'} \psi_{\nu P}^{*}(123) \psi_{\nu P'}(456) f_{3}(E_{\nu P'}^{0}) \{\delta_{36} \psi_{\nu P}(123) \psi_{\nu P'}^{*}(456) - \psi_{\nu P}(453) \psi_{\nu P'}^{*}(126)\} \\
\times [E(1) + E(2) + E(3) + E(4) + E(5) + E(6) - E_{\nu P}^{0} - E_{\nu P'}^{0}] \\
= \Delta E_{\nu P}^{\text{Pauli, free}} + \Delta E_{\nu P}^{\text{Pauli, bound}}.$

PHYSICAL REVIEW D

VOLUME 34, NUMBER 11

1 DECEMBER 1986

Pauli quenching effects in a simple string model of quark/nuclear matter

G. Röpke and D. Blaschke

Department of Physics, Wilhelm-Pieck-University, 2500 Rostock, German Democratic Republic

H. Schulz

Central Institute for Nuclear Research, Rossendorf, 8051 Dresden, German Democratic Republic and The Niels Bohr Institute, 2100 Copenhagen, Denmark (Received 16 December 1985)

Example C: Pauli blocking in NM – details

New aspect: chiral restoration --> dropping quark mass

Increased baryon swelling at supersaturation densities: --> dramatic enhancement of the Pauli repulsion !!

D.B., H. Grigorian, G. Roepke: "Quark exchange effects in dense nuclear matter", in prep. (2016)

Example C: Pauli blocking in NM – results

Example C: Pauli blocking in NM – Summary

Pauli blocking selfenergy (cluster meanfield) calculable in potential models for baryon structure

Partial replacement of other short-range repulsion mechanisms (vector meson exchange)

Modern aspects:

- onset of chiral symmetry restoration enhances nucleon swelling and Pauli blocking at high n
- quark exchange among baryons -> six-quark wavefunction -> "bag melting" -> deconfinement

Chiral stiffening of nuclear matter --> reduces onset density for deconfinement

Hybrid EoS:

Convenient generalization of RMF models,

Take care: eventually aspects of quark exchange already in density dependent vertices!

Other baryons:

- hyperons
- deltas

Again calculable, partially done in nonrelativistic quark exchange models, chiral effects not yet!

Relativistic generalization:

Box diagrams of quark-diquark model ...

K. Maeda, Ann. Phys. 326 (2011) 1032

Support a CEP in QCD phase diagram with Astrophysics?

NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

A&A 577, A40 (2015) <u>al.,</u> et Benic S

Crossover at finite T (Lattice QCD) + First order at zero T (Astrophysics) = Critical endpoint exists!